硬核干货:4W字从源码上分析JUC线程池ThreadPoolExecutor的实现原理

编程语言 2020-12-17 03:51:05
前提 很早之前就打算看一次JUC线程池ThreadPoolExecutor的源码实现,由于近段时间比较忙,一直没有时间整理出源码分析的文章。之前在分析扩展线程池实现可回调的Future时候曾经提到并发
public interface Executor {

    void execute(Runnable command);
}    

JUC同步器框架

  • 全局锁mainLock成员属性,是可重入锁ReentrantLock类型,主要是用于访问工作线程Worker集合和进行数据统计记录时候的加锁操作。
  • 条件变量terminationCondition类型,主要用于线程进行等待终结awaitTermination()方法时的带期限阻塞。
  • 任务队列workQueueBlockingQueue<Runnable>类型,任务队列,用于存放待执行的任务。
  • 工作线程,内部类Worker类型,是线程池中真正的工作线程对象。

核心线程

  • 暂时不考虑任务执行异常情况下的处理。
  • 任务队列为无界队列。
  • 线程池容量固定为核心线程数量。
  • 暂时不考虑拒绝策略。
public class CoreThreadPool implements Executor {

    private BlockingQueue<Runnable> workQueue;
    private static final AtomicInteger COUNTER = new AtomicInteger();
    private int coreSize;
    private int threadCount = 0;

    public CoreThreadPool(int coreSize) {
        this.coreSize = coreSize;
        this.workQueue = new LinkedBlockingQueue<>();
    }

    @Override
    public void execute(Runnable command) {
        if (++threadCount <= coreSize) {
            new Worker(command).start();
        } else {
            try {
                workQueue.put(command);
            } catch (InterruptedException e) {
                throw new IllegalStateException(e);
            }
        }
    }

    private class Worker extends Thread {
        private Runnable firstTask;

        public Worker(Runnable runnable) {
            super(String.format("Worker-%d",COUNTER.getAndIncrement()));
            this.firstTask = runnable;
        }

        @Override
        public void run() {
            Runnable task = this.firstTask;
            while (null != task || null != (task = getTask())) {
                try {
                    task.run();
                } finally {
                    task = null;
                }
            }
        }
    }

    private Runnable getTask() {
        try {
            return workQueue.take();
        } catch (InterruptedException e) {
            throw new IllegalStateException(e);
        }
    }

    public static void main(String[] args) throws Exception {
        CoreThreadPool pool = new CoreThreadPool(5);
        IntStream.range(0,10)
                .forEach(i -> pool.execute(() ->
                        System.out.println(String.format("Thread:%s,value:%d",Thread.currentThread().getName(),i))));
        Thread.sleep(Integer.MAX_VALUE);
    }
}
Thread:Worker-0,value:0
Thread:Worker-3,value:3
Thread:Worker-2,value:2
Thread:Worker-1,value:1
Thread:Worker-4,value:4
Thread:Worker-1,value:5
Thread:Worker-2,value:8
Thread:Worker-4,value:7
Thread:Worker-0,value:6
Thread:Worker-3,value:9

其他附加功能

  • 一定条件下会创建非核心线程去执行任务,非核心线程的回收周期(线程生命周期终结时刻)是keepAliveTime,线程生命周期终结的条件是:下一次通过任务队列获取任务的时候并且存活时间超过keepAliveTime
  • 提供拒绝策略,也就是在核心线程满负载、任务队列已满、非核心线程满负载的条件下会触发拒绝策略。

关键属性

public class ThreadPoolExecutor extends AbstractExecutorService {

    // 控制变量-存放状态和线程数
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING,0));

    // 任务队列,必须是阻塞队列
    private final BlockingQueue<Runnable> workQueue;

    // 工作线程集合,存放线程池中所有的(活跃的)工作线程,只有在持有全局锁mainLock的前提下才能访问此集合
    private final HashSet<Worker> workers = new HashSet<>();
    
    // 全局锁
    private final ReentrantLock mainLock = new ReentrantLock();

    // awaitTermination方法使用的等待条件变量
    private final Condition termination = mainLock.newCondition();

    // 记录峰值线程数
    private int largestPoolSize;
    
    // 记录已经成功执行完毕的任务数
    private long completedTaskCount;
    
    // 线程工厂,用于创建新的线程实例
    private volatile ThreadFactory threadFactory;

    // 拒绝执行处理器,对应不同的拒绝策略
    private volatile RejectedExecutionHandler handler;
    
    // 空闲线程等待任务的时间周期,单位是纳秒
    private volatile long keepAliveTime;
    
    // 是否允许核心线程超时,如果为true则keepAliveTime对核心线程也生效
    private volatile boolean allowCoreThreadTimeOut;
    
    // 核心线程数
    private volatile int corePoolSize;

    // 线程池容量
    private volatile int maximumPoolSize;

    // 省略其他代码
}    
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {
    if (corePoolSize < 0 ||
        maximumPoolSize <= 0 ||
        maximumPoolSize < corePoolSize ||
        keepAliveTime < 0)
        throw new IllegalArgumentException();
    if (workQueue == null || threadFactory == null || handler == null)
        throw new NullPointerException();
    this.corePoolSize = corePoolSize;
    this.maximumPoolSize = maximumPoolSize;
    this.workQueue = workQueue;
    this.keepAliveTime = unit.toNanos(keepAliveTime);
    this.threadFactory = threadFactory;
    this.handler = handler;
}
  • corePoolSize:int类型,核心线程数量。
  • maximumPoolSize:int类型,最大线程数量,也就是线程池的容量。
  • keepAliveTime:long类型,线程空闲等待时间,也和工作线程的生命周期有关,下文会分析。
  • unitTimeUnit类型,keepAliveTime参数的时间单位,实际上keepAliveTime最终会转化为纳秒。
  • workQueueBlockingQueue<Runnable>类型,等待队列或者叫任务队列。
  • threadFactoryThreadFactory类型,线程工厂,用于创建工作线程(包括核心线程和非核心线程),默认使用Executors.defaultThreadFactory()作为内建线程工厂实例,一般自定义线程工厂才能更好地跟踪工作线程。
  • handlerRejectedExecutionHandler类型,线程池的拒绝执行处理器,更多时候称为拒绝策略,拒绝策略执行的时机是当阻塞队列已满、没有空闲的线程(包括核心线程和非核心线程)并且继续提交任务。提供了4种内建的拒绝策略实现:
    • AbortPolicy:直接拒绝策略,也就是不会执行任务,直接抛出RejectedExecutionException,这是默认的拒绝策略
    • DiscardPolicy:抛弃策略,也就是直接忽略提交的任务(通俗来说就是空实现)。
    • DiscardOldestPolicy:抛弃最老任务策略,也就是通过poll()方法取出任务队列队头的任务抛弃,然后执行当前提交的任务。
    • CallerRunsPolicy:调用者执行策略,也就是当前调用Executor#execute()的线程直接调用任务Runnable#run()一般不希望任务丢失会选用这种策略,但从实际角度来看,原来的异步调用意图会退化为同步调用

状态控制

private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING,0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int COUNT_MASK = (1 << COUNT_BITS) - 1;

private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =  0 << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

// 通过ctl值获取运行状态
private static int runStateOf(int c)     { return c & ~COUNT_MASK; }
// 通过ctl值获取工作线程数
private static int workerCountOf(int c)  { return c & COUNT_MASK; }

// 通过运行状态和工作线程数计算ctl的值,或运算
private static int ctlOf(int rs,int wc) { return rs | wc; }

private static boolean runStateLessThan(int c,int s) {
    return c < s;
}

private static boolean runStateAtLeast(int c,int s) {
    return c >= s;
}

private static boolean isRunning(int c) {
    return c < SHUTDOWN;
}

// CAS操作线程数增加1
private boolean compareAndIncrementWorkerCount(int expect) {
    return ctl.compareAndSet(expect,expect + 1);
}

// CAS操作线程数减少1
private boolean compareAndDecrementWorkerCount(int expect) {
    return ctl.compareAndSet(expect,expect - 1);
}

// 线程数直接减少1
private void decrementWorkerCount() {
    ctl.addAndGet(-1);
}
// -1的补码为:111-11111111111111111111111111111
// 左移29位后:111-00000000000000000000000000000
// 10进制值为:-536870912 
// 高3位111的值就是表示线程池正在处于运行状态
private static final int RUNNING = -1 << COUNT_BITS;
// rs=RUNNING值为:111-00000000000000000000000000000
// wc的值为0:000-00000000000000000000000000000
// rs | wc的结果为:111-00000000000000000000000000000
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING,0));
private static int ctlOf(int rs,int wc) { 
    return rs | wc; 
}
// 先把COUNT_MASK取反(~COUNT_MASK),得到:111-00000000000000000000000000000
// ctl位图特点是:xxx-yyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
// 两者做一次与运算即可得到高3位xxx
private static int runStateOf(int c){ 
    return c & ~COUNT_MASK; 
}
状态名称 位图 十进制值 描述
RUNNING 111-00000000000000000000000000000 -536870912 运行中状态,可以接收新的任务和执行任务队列中的任务
SHUTDOWN 000-00000000000000000000000000000 0 shutdown状态,不再接收新的任务,但是会执行任务队列中的任务
STOP 001-00000000000000000000000000000 536870912 停止状态,不再接收新的任务,也不会执行任务队列中的任务,中断所有执行中的任务
TIDYING 010-00000000000000000000000000000 1073741824 整理中状态,所有任务已经终结,工作线程数为0,过渡到此状态的工作线程会调用钩子方法terminated()
TERMINATED 011-00000000000000000000000000000 1610612736 终结状态,钩子方法terminated()执行完毕
// ctl和状态常量比较,判断是否小于
private static boolean runStateLessThan(int c,int s) {
    return c < s;
}

// ctl和状态常量比较,判断是否小于或等于
private static boolean runStateAtLeast(int c,int s) {
    return c >= s;
}

// ctl和状态常量SHUTDOWN比较,判断是否处于RUNNING状态
private static boolean isRunning(int c) {
    return c < SHUTDOWN;
}

execute方法源码分析

// 执行命令,其中命令(下面称任务)对象是Runnable的实例
public void execute(Runnable command) {
    // 判断命令(任务)对象非空
    if (command == null)
        throw new NullPointerException();
    // 获取ctl的值
    int c = ctl.get();
    // 判断如果当前工作线程数小于核心线程数,则创建新的核心线程并且执行传入的任务
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command,true))
            // 如果创建新的核心线程成功则直接返回
            return;
        // 这里说明创建核心线程失败,需要更新ctl的临时变量c
        c = ctl.get();
    }
    // 走到这里说明创建新的核心线程失败,也就是当前工作线程数大于等于corePoolSize
    // 判断线程池是否处于运行中状态,同时尝试用非阻塞方法向任务队列放入任务(放入任务失败返回false)
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        // 这里是向任务队列投放任务成功,对线程池的运行中状态做二次检查
        // 如果线程池二次检查状态是非运行中状态,则从任务队列移除当前的任务调用拒绝策略处理之(也就是移除前面成功入队的任务实例)
        if (! isRunning(recheck) && remove(command))
            // 调用拒绝策略处理任务 - 返回
            reject(command);
        // 走到下面的else if分支,说明有以下的前提:
        // 0、待执行的任务已经成功加入任务队列
        // 1、线程池可能是RUNNING状态
        // 2、传入的任务可能从任务队列中移除失败(移除失败的唯一可能就是任务已经被执行了)
        // 如果当前工作线程数量为0,则创建一个非核心线程并且传入的任务对象为null - 返回
        // 也就是创建的非核心线程不会马上运行,而是等待获取任务队列的任务去执行 
        // 如果前工作线程数量不为0,原来应该是最后的else分支,但是可以什么也不做,因为任务已经成功入队列,总会有合适的时机分配其他空闲线程去执行它
        else if (workerCountOf(recheck) == 0)
            addWorker(null,false);
    }
    // 走到这里说明有以下的前提:
    // 0、线程池中的工作线程总数已经大于等于corePoolSize(简单来说就是核心线程已经全部懒创建完毕)
    // 1、线程池可能不是RUNNING状态
    // 2、线程池可能是RUNNING状态同时任务队列已经满了
    // 如果向任务队列投放任务失败,则会尝试创建非核心线程传入任务执行
    // 创建非核心线程失败,此时需要拒绝执行任务
    else if (!addWorker(command,false))
        // 调用拒绝策略处理任务 - 返回
        reject(command);
}
  1. 如果当前工作线程总数小于corePoolSize,则直接创建核心线程执行任务(任务实例会传入直接用于构造工作线程实例)。
  2. 如果当前工作线程总数大于等于corePoolSize,判断线程池是否处于运行中状态,同时尝试用非阻塞方法向任务队列放入任务,这里会二次检查线程池运行状态,如果当前工作线程数量为0,则创建一个非核心线程并且传入的任务对象为null。
  3. 如果向任务队列投放任务失败(任务队列已经满了),则会尝试创建非核心线程传入任务实例执行。
  4. 如果创建非核心线程失败,此时需要拒绝执行任务,调用拒绝策略处理任务。

addWorker方法源码分析

// 添加工作线程,如果返回false说明没有新创建工作线程,如果返回true说明创建和启动工作线程成功
private boolean addWorker(Runnable firstTask,boolean core) {
    retry:  
    // 注意这是一个死循环 - 最外层循环
    for (int c = ctl.get();;) {
        // 这个是十分复杂的条件,这里先拆分多个与(&&)条件:
        // 1. 线程池状态至少为SHUTDOWN状态,也就是rs >= SHUTDOWN(0)
        // 2. 线程池状态至少为STOP状态,也就是rs >= STOP(1),或者传入的任务实例firstTask不为null,或者任务队列为空
        // 其实这个判断的边界是线程池状态为shutdown状态下,不会再接受新的任务,在此前提下如果状态已经到了STOP、或者传入任务不为空、或者任务队列为空(已经没有积压任务)都不需要添加新的线程
        if (runStateAtLeast(c,SHUTDOWN)
            && (runStateAtLeast(c,STOP)
                || firstTask != null
                || workQueue.isEmpty()))
            return false;
        // 注意这也是一个死循环 - 二层循环
        for (;;) {
            // 这里每一轮循环都会重新获取工作线程数wc
            // 1. 如果传入的core为true,表示将要创建核心线程,通过wc和corePoolSize判断,如果wc >= corePoolSize,则返回false表示创建核心线程失败
            // 1. 如果传入的core为false,表示将要创非建核心线程,通过wc和maximumPoolSize判断,如果wc >= maximumPoolSize,则返回false表示创建非核心线程失败
            if (workerCountOf(c)
                >= ((core ? corePoolSize : maximumPoolSize) & COUNT_MASK))
                return false;
            // 成功通过CAS更新工作线程数wc,则break到最外层的循环
            if (compareAndIncrementWorkerCount(c))
                break retry;
            // 走到这里说明了通过CAS更新工作线程数wc失败,这个时候需要重新判断线程池的状态是否由RUNNING已经变为SHUTDOWN
            c = ctl.get();  // Re-read ctl
            // 如果线程池状态已经由RUNNING已经变为SHUTDOWN,则重新跳出到外层循环继续执行
            if (runStateAtLeast(c,SHUTDOWN))
                continue retry;
            // 如果线程池状态依然是RUNNING,CAS更新工作线程数wc失败说明有可能是并发更新导致的失败,则在内层循环重试即可 
            // else CAS failed due to workerCount change; retry inner loop 
        }
    }
    // 标记工作线程是否启动成功
    boolean workerStarted = false;
    // 标记工作线程是否创建成功
    boolean workerAdded = false;
    Worker w = null;
    try {
        // 传入任务实例firstTask创建Worker实例,Worker构造里面会通过线程工厂创建新的Thread对象,所以下面可以直接操作Thread t = w.thread
        // 这一步Worker实例已经创建,但是没有加入工作线程集合或者启动它持有的线程Thread实例
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            // 这里需要全局加锁,因为会改变一些指标值和非线程安全的集合
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int c = ctl.get();
                // 这里主要在加锁的前提下判断ThreadFactory创建的线程是否存活或者判断获取锁成功之后线程池状态是否已经更变为SHUTDOWN
                // 1. 如果线程池状态依然为RUNNING,则只需要判断线程实例是否存活,需要添加到工作线程集合和启动新的Worker
                // 2. 如果线程池状态小于STOP,也就是RUNNING或者SHUTDOWN状态下,同时传入的任务实例firstTask为null,则需要添加到工作线程集合和启动新的Worker
                // 对于2,换言之,如果线程池处于SHUTDOWN状态下,同时传入的任务实例firstTask不为null,则不会添加到工作线程集合和启动新的Worker
                // 这一步其实有可能创建了新的Worker实例但是并不启动(临时对象,没有任何强引用),这种Worker有可能成功下一轮GC被收集的垃圾对象
                if (isRunning(c) ||
                    (runStateLessThan(c,STOP) && firstTask == null)) {
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    // 把创建的工作线程实例添加到工作线程集合
                    workers.add(w);
                    int s = workers.size();
                    // 尝试更新历史峰值工作线程数,也就是线程池峰值容量
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    // 这里更新工作线程是否启动成功标识为true,后面才会调用Thread#start()方法启动真实的线程实例
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            // 如果成功添加工作线程,则调用Worker内部的线程实例t的Thread#start()方法启动真实的线程实例
            if (workerAdded) {
                t.start();
                // 标记线程启动成功
                workerStarted = true;
            }
        }
    } finally {
        // 线程启动失败,需要从工作线程集合移除对应的Worker
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

// 添加Worker失败
private void addWorkerFailed(Worker w) {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 从工作线程集合移除之
        if (w != null)
            workers.remove(w);
        // wc数量减1    
        decrementWorkerCount();
        // 基于状态判断尝试终结线程池
        tryTerminate();
    } finally {
        mainLock.unlock();
    }
}
if (runStateAtLeast(c,SHUTDOWN)
    && (runStateAtLeast(c,STOP)
        || firstTask != null
        || workQueue.isEmpty()))
    return false;
// ....
//  代码拆分一下如下 
boolean atLeastShutdown = runStateAtLeast(c,SHUTDOWN);     # rs >= SHUTDOWN(0)
boolean atLeastStop = runStateAtLeast(c,STOP) || firstTask != null || workQueue.isEmpty();     
if (atLeastShutdown && atLeastStop){
   return false;
}

工作线程内部类Worker源码分析

private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
    /**
        * This class will never be serialized,but we provide a
        * serialVersionUID to suppress a javac warning.
        */
    private static final long serialVersionUID = 6138294804551838833L;

    // 保存ThreadFactory创建的线程实例,如果ThreadFactory创建线程失败则为null
    final Thread thread;
    // 保存传入的Runnable任务实例
    Runnable firstTask;
    // 记录每个线程完成的任务总数
    volatile long completedTasks;
    
    // 唯一的构造函数,传入任务实例firstTask,注意可以为null
    Worker(Runnable firstTask) {
        // 禁止线程中断,直到runWorker()方法执行
        setState(-1); // inhibit interrupts until runWorker
        this.firstTask = firstTask;
        // 通过ThreadFactory创建线程实例,注意一下Worker实例自身作为Runnable用于创建新的线程实例
        this.thread = getThreadFactory().newThread(this);
    }

    // 委托到外部的runWorker()方法,注意runWorker()方法是线程池的方法,而不是Worker的方法
    public void run() {
        runWorker(this);
    }

    // Lock methods
    //
    // The value 0 represents the unlocked state.
    // The value 1 represents the locked state.
    //  是否持有独占锁,state值为1的时候表示持有锁,state值为0的时候表示已经释放锁
    protected boolean isHeldExclusively() {
        return getState() != 0;
    }

    // 独占模式下尝试获取资源,这里没有判断传入的变量,直接CAS判断0更新为1是否成功,成功则设置独占线程为当前线程
    protected boolean tryAcquire(int unused) {
        if (compareAndSetState(0,1)) {
            setExclusiveOwnerThread(Thread.currentThread());
            return true;
        }
        return false;
    }
    
    // 独占模式下尝试是否资源,这里没有判断传入的变量,直接把state设置为0
    protected boolean tryRelease(int unused) {
        setExclusiveOwnerThread(null);
        setState(0);
        return true;
    }
    
    // 加锁
    public void lock()        { acquire(1); }

    // 尝试加锁
    public boolean tryLock()  { return tryAcquire(1); }

    // 解锁
    public void unlock()      { release(1); }

    // 是否锁定
    public boolean isLocked() { return isHeldExclusively(); }
    
    // 启动后进行线程中断,注意这里会判断线程实例的中断标志位是否为false,只有中断标志位为false才会中断
    void interruptIfStarted() {
        Thread t;
        if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
            try {
                t.interrupt();
            } catch (SecurityException ignore) {
            }
        }
    }
}
// addWorker()方法中构造
Worker worker = createWorker();
// 通过线程池构造时候传入
ThreadFactory threadFactory = getThreadFactory();
// Worker构造函数中
Thread thread = threadFactory.newThread(worker);
// addWorker()方法中启动
thread.start();
final void runWorker(Worker w) {
    // 获取当前线程,实际上和Worker持有的线程实例是相同的
    Thread wt = Thread.currentThread();
    // 获取Worker中持有的初始化时传入的任务对象,这里注意存放在临时变量task中
    Runnable task = w.firstTask;
    // 设置Worker中持有的初始化时传入的任务对象为null
    w.firstTask = null;
    // 由于Worker初始化时AQS中state设置为-1,这里要先做一次解锁把state更新为0,允许线程中断
    w.unlock(); // allow interrupts
    // 记录线程是否因为用户异常终结,默认是true
    boolean completedAbruptly = true;
    try {
        // 初始化任务对象不为null,或者从任务队列获取任务不为空(从任务队列获取到的任务会更新到临时变量task中)
        // getTask()由于使用了阻塞队列,这个while循环如果命中后半段会处于阻塞或者超时阻塞状态,getTask()返回为null会导致线程跳出死循环使线程终结
        while (task != null || (task = getTask()) != null) {
            // Worker加锁,本质是AQS获取资源并且尝试CAS更新state由0更变为1
            w.lock();
            // If pool is stopping,ensure thread is interrupted;
            // if not,ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            // 如果线程池正在停止(也就是由RUNNING或者SHUTDOWN状态向STOP状态变更),那么要确保当前工作线程是中断状态
            // 否则,要保证当前线程不是中断状态
            if ((runStateAtLeast(ctl.get(),STOP) ||
                    (Thread.interrupted() &&
                    runStateAtLeast(ctl.get(),STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                // 钩子方法,任务执行前
                beforeExecute(wt,task);
                try {
                    task.run();
                    // 钩子方法,任务执行后 - 正常情况
                    afterExecute(task,null);
                } catch (Throwable ex) {
                    // 钩子方法,任务执行后 - 异常情况
                    afterExecute(task,ex);
                    throw ex;
                }
            } finally {
                // 清空task临时变量,这个很重要,否则while会死循环执行同一个task
                task = null;
                // 累加Worker完成的任务数
                w.completedTasks++;
                // Worker解锁,本质是AQS释放资源,设置state为0
                w.unlock();
            }
        }
        // 走到这里说明某一次getTask()返回为null,线程正常退出
        completedAbruptly = false;
    } finally {
        // 处理线程退出,completedAbruptly为true说明由于用户异常导致线程非正常退出
        processWorkerExit(w,completedAbruptly);
    }
}
if ((runStateAtLeast(ctl.get(),STOP) ||
        (Thread.interrupted() &&
        runStateAtLeast(ctl.get(),STOP))) &&
    !wt.isInterrupted())
    wt.interrupt();
// 先简化一下判断逻辑,如下
// 判断线程池状态是否至少为STOP,rs >= STOP(1)
boolean atLeastStop = runStateAtLeast(ctl.get(),STOP);
// 判断线程池状态是否至少为STOP,同时判断当前线程的中断状态并且清空当前线程的中断状态
boolean interruptedAndAtLeastStop = Thread.interrupted() && runStateAtLeast(ctl.get(),STOP);
if (atLeastStop || interruptedAndAtLeastStop && !wt.isInterrupted()){
    wt.interrupt();
}
  1. Worker先执行一次解锁操作,用于解除不可中断状态。
  2. 通过while循环调用getTask()方法从任务队列中获取任务(当然,首轮循环也有可能是外部传入的firstTask任务实例)。
  3. 如果线程池更变为STOP状态,则需要确保工作线程是中断状态并且进行中断处理,否则要保证工作线程必须不是中断状态。
  4. 执行任务实例Runnale#run()方法,任务实例执行之前和之后(包括正常执行完毕和异常执行情况)分别会调用钩子方法beforeExecute()afterExecute()
  5. while循环跳出意味着runWorker()方法结束和工作线程生命周期结束(Worker#run()生命周期完结),会调用processWorkerExit()处理工作线程退出的后续工作。

getTask方法源码分析

private Runnable getTask() {
    // 记录上一次从队列中拉取的时候是否超时
    boolean timedOut = false; // Did the last poll() time out?
    // 注意这是死循环
    for (;;) {
        int c = ctl.get();

        // Check if queue empty only if necessary.
        // 第一个if:如果线程池状态至少为SHUTDOWN,也就是rs >= SHUTDOWN(0),则需要判断两种情况(或逻辑):
        // 1. 线程池状态至少为STOP(1),也就是线程池正在停止,一般是调用了shutdownNow()方法
        // 2. 任务队列为空
        // 如果在线程池至少为SHUTDOWN状态并且满足上面两个条件之一,则工作线程数wc减去1,然后直接返回null
        if (runStateAtLeast(c,STOP) || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }
        // 跑到这里说明线程池还处于RUNNING状态,重新获取一次工作线程数
        int wc = workerCountOf(c);

        // Are workers subject to culling?
        // timed临时变量勇于线程超时控制,决定是否需要通过poll()此带超时的非阻塞方法进行任务队列的任务拉取
        // 1.allowCoreThreadTimeOut默认值为false,如果设置为true,则允许核心线程也能通过poll()方法从任务队列中拉取任务
        // 2.工作线程数大于核心线程数的时候,说明线程池中创建了额外的非核心线程,这些非核心线程一定是通过poll()方法从任务队列中拉取任务
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
        // 第二个if:
        // 1.wc > maximumPoolSize说明当前的工作线程总数大于maximumPoolSize,说明了通过setMaximumPoolSize()方法减少了线程池容量
        // 或者 2.timed && timedOut说明了线程命中了超时控制并且上一轮循环通过poll()方法从任务队列中拉取任务为null
        // 并且 3. 工作线程总数大于1或者任务队列为空,则通过CAS把线程数减去1,同时返回null,
        // CAS把线程数减去1失败会进入下一轮循环做重试
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        try {
            // 如果timed为true,通过poll()方法做超时拉取,keepAliveTime时间内没有等待到有效的任务,则返回null
            // 如果timed为false,通过take()做阻塞拉取,会阻塞到有下一个有效的任务时候再返回(一般不会是null)
            Runnable r = timed ?
                workQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS) :
                workQueue.take();
            // 这里很重要,只有非null时候才返回,null的情况下会进入下一轮循环
            if (r != null)
                return r;
            // 跑到这里说明上一次从任务队列中获取到的任务为null,一般是workQueue.poll()方法超时返回null
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}
  1. 线程池状态为SHUTDOWN,一般是调用了shutdown()方法,并且任务队列为空。
  2. 线程池状态为STOP
// 工作线程总数大于maximumPoolSize,说明了通过setMaximumPoolSize()方法减少了线程池容量
boolean b1 = wc > maximumPoolSize;
// 允许线程超时同时上一轮通过poll()方法从任务队列中拉取任务为null
boolean b2 = timed && timedOut;
// 工作线程总数大于1
boolean b3 = wc > 1;
// 任务队列为空
boolean b4 = workQueue.isEmpty();
boolean r = (b1 || b2) && (b3 || b4);
if (r) {
    if (compareAndDecrementWorkerCount(c)){
        return null;
    }else{
        continue;
    }
}
  • 当允许核心线程超时,也就是allowCoreThreadTimeOut设置为true的时候,此时keepAliveTime表示空闲的工作线程的存活周期。
  • 默认情况下不允许核心线程超时,此时keepAliveTime表示空闲的非核心线程的存活周期。

processWorkerExit方法源码分析

private void processWorkerExit(Worker w,boolean completedAbruptly) {
    // 因为抛出用户异常导致线程终结,直接使工作线程数减1即可
    // 如果没有任何异常抛出的情况下是通过getTask()返回null引导线程正常跳出runWorker()方法的while死循环从而正常终结,这种情况下,在getTask()中已经把线程数减1
    if (completedAbruptly) // If abrupt,then workerCount wasn't adjusted
        decrementWorkerCount();

    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 全局的已完成任务记录数加上此将要终结的Worker中的已完成任务数
        completedTaskCount += w.completedTasks;
        // 工作线程集合中移除此将要终结的Worker
        workers.remove(w);
    } finally {
        mainLock.unlock();
    }
     
    // 见下一小节分析,用于根据当前线程池的状态判断是否需要进行线程池terminate处理
    tryTerminate();

    int c = ctl.get();
    // 如果线程池的状态小于STOP,也就是处于RUNNING或者SHUTDOWN状态的前提下:
    // 1.如果线程不是由于抛出用户异常终结,如果允许核心线程超时,则保持线程池中至少存在一个工作线程
    // 2.如果线程由于抛出用户异常终结,或者当前工作线程数,那么直接添加一个新的非核心线程
    if (runStateLessThan(c,STOP)) {
        if (!completedAbruptly) {
            // 如果允许核心线程超时,最小值为0,否则为corePoolSize
            int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
            // 如果最小值为0,同时任务队列不空,则更新最小值为1
            if (min == 0 && ! workQueue.isEmpty())
                min = 1;
            // 工作线程数大于等于最小值,直接返回不新增非核心线程
            if (workerCountOf(c) >= min)
                return; // replacement not needed
        }
        addWorker(null,false);
    }
}
  • allowCoreThreadTimeOut为true,也就是允许核心线程超时的前提下,如果任务队列空,则会通过创建一个非核心线程保持线程池中至少有一个工作线程。
  • allowCoreThreadTimeOut为false,如果工作线程总数大于corePoolSize则直接返回,否则创建一个非核心线程,也就是会趋向于保持线程池中的工作线程数量趋向于corePoolSize

tryTerminate方法源码分析

final void tryTerminate() {
    for (;;) {
        int c = ctl.get();
        // 判断线程池的状态,如果是下面三种情况下的任意一种则直接返回:
        // 1.线程池处于RUNNING状态
        // 2.线程池至少为TIDYING状态,也就是TIDYING或者TERMINATED状态,意味着已经走到了下面的步骤,线程池即将终结
        // 3.线程池至少为STOP状态并且任务队列不为空
        if (isRunning(c) ||
            runStateAtLeast(c,TIDYING) ||
            (runStateLessThan(c,STOP) && ! workQueue.isEmpty()))
            return;
        // 工作线程数不为0,则中断工作线程集合中的第一个空闲的工作线程
        if (workerCountOf(c) != 0) { // Eligible to terminate
            interruptIdleWorkers(ONLY_ONE);
            return;
        }

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            // CAS设置线程池状态为TIDYING,如果设置成功则执行钩子方法terminated()
            if (ctl.compareAndSet(c,ctlOf(TIDYING,0))) {
                try {
                    terminated();
                } finally {
                    // 最后更新线程池状态为TERMINATED
                    ctl.set(ctlOf(TERMINATED,0));
                    // 唤醒阻塞在termination条件的所有线程,这个变量的await()方法在awaitTermination()中调用
                    termination.signalAll();
                }
                return;
            }
        } finally {
            mainLock.unlock();
        }
        // else retry on failed CAS
    }
}

// 中断空闲的工作线程,onlyOne为true的时候,只会中断工作线程集合中的某一个线程
private void interruptIdleWorkers(boolean onlyOne) {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        for (Worker w : workers) {
            Thread t = w.thread;
            // 这里判断线程不是中断状态并且尝试获取锁成功的时候才进行线程中断
            if (!t.isInterrupted() && w.tryLock()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                } finally {
                    w.unlock();
                }
            }
            // 这里跳出循环,也就是只中断集合中第一个工作线程
            if (onlyOne)
                break;
        }
    } finally {
        mainLock.unlock();
    }
}

shutdown方法源码分析

public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 权限校验,安全策略相关判断
        checkShutdownAccess();
        // 设置SHUTDOWN状态
        advanceRunState(SHUTDOWN);
        // 中断所有的空闲的工作线程
        interruptIdleWorkers();
        // 钩子方法
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 调用上面分析果敢的尝试terminate方法,使状态更变为TIDYING,执行钩子方法terminated()后,最终状态更新为TERMINATED
    tryTerminate();
}

// 升提状态
private void advanceRunState(int targetState) {
    // assert targetState == SHUTDOWN || targetState == STOP;
    for (;;) {
        int c = ctl.get();
        // 线程池状态至少为targetState或者CAS设置状态为targetState则跳出循环
        if (runStateAtLeast(c,targetState) ||
            ctl.compareAndSet(c,ctlOf(targetState,workerCountOf(c))))
            break;
    }
}

// 中断所有的空闲的工作线程
private void interruptIdleWorkers() {
    interruptIdleWorkers(false);
}
public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 权限校验,安全策略相关判断
        checkShutdownAccess();
        // 设置STOP状态
        advanceRunState(STOP);
        // 中断所有的工作线程
        interruptWorkers();
        // 清空工作队列并且取出所有的未执行的任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
     // 调用上面分析果敢的尝试terminate方法,使状态更变为TIDYING,执行钩子方法terminated()后,最终状态更新为TERMINATED
    tryTerminate();
    return tasks;
}

// 遍历所有的工作线程,如果state > 0(启动状态)则进行中断
private void interruptWorkers() {
    // assert mainLock.isHeldByCurrentThread();
    for (Worker w : workers)
        w.interruptIfStarted();
}
public boolean awaitTermination(long timeout,TimeUnit unit)
    throws InterruptedException {
    // 转换timeout的单位为纳秒
    long nanos = unit.toNanos(timeout);
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 循环等待直到线程池状态更变为TERMINATED,每轮循环等待nanos纳秒
        while (runStateLessThan(ctl.get(),TERMINATED)) {
            if (nanos <= 0L)
                return false;
            nanos = termination.awaitNanos(nanos);
        }
        return true;
    } finally {
        mainLock.unlock();
    }
}

理解可重入锁mainLock成员变量

方法 主要作用
tryTerminate 保证状态TIDYING -> TERMINATED,钩子方法terminated()回调和条件变量唤醒
interruptIdleWorkers 保护工作线程中断的串行化,避免"中断风暴"
addWorker 保护工作线程集合避免并发增加工作线程、保护度量统计数据变更
processWorkerExit 保护度量统计数据变更
shutdownshutdownNowawaitTermination 见下文分析
getPoolSizegetActiveCountgetLargestPoolSizegetTaskCountgetCompletedTaskCount 保护度量统计数据读取,这些统计数据来一般源于Worker集合的属性统计
public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        advanceRunState(SHUTDOWN);
        interruptIdleWorkers();
        onShutdown(); // hook for ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
}
public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        advanceRunState(STOP);
        interruptWorkers();
        tasks = drainQueue();  # <---  多了这一步
    } finally {
        mainLock.unlock();
    }
    tryTerminate();
    return tasks;
}
// 条件变量必须在锁代码块中执行,和synchronized关键字用法差不多
public boolean awaitTermination(long timeout,TimeUnit unit)
    throws InterruptedException {
    long nanos = unit.toNanos(timeout);
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        // 死循环确保等待执行和状态变更为TERMINATED
        while (runStateLessThan(ctl.get(),TERMINATED)) {
            if (nanos <= 0L)
                return false;
            nanos = termination.awaitNanos(nanos);   # <-- 确保当前调用线程阻塞等待对应的时间或者线程池状态变更为TERMINATED,再退出等待
        }
        return true;
    } finally {
        mainLock.unlock();
    }
}

reject方法源码分析

final void reject(Runnable command) {
    handler.rejectedExecution(command,this);
}

钩子方法分析

  • beforeExecute(Thread t,Runnable r):任务对象Runnable#run()执行之前触发回调。
  • afterExecute(Runnable r,Throwable t):任务对象Runnable#run()执行之后(包括异常完成情况和正常完成情况)触发回调。
  • terminated():线程池关闭的时候,状态更变为TIDYING成功之后会回调此方法,执行此方法完毕后,线程池状态会更新为TERMINATED
  • onShutdown()shutdown()方法执行时候会回调此方法,API注释中提到此方法主要提供给ScheduledThreadPoolExecutor使用。

其他方法

  • getCorePoolSize():获取核心线程数。
  • setCorePoolSize():重新设置线程池的核心线程数。
  • prestartCoreThread():预启动一个核心线程,当且仅当工作线程数量小于核心线程数量。
  • prestartAllCoreThreads():预启动所有核心线程。
  • getMaximumPoolSize():获取线程池容量。
  • setMaximumPoolSize():重新设置线程池的最大容量。
  • setKeepAliveTime():设置空闲工作线程的存活周期。
  • getKeepAliveTime():获取空闲工作线程的存活周期。
  • getTaskCount():获取所有已经被执行的任务总数的近似值。
  • getCompletedTaskCount():获取所有已经执行完成的任务总数的近似值。
  • getLargestPoolSize():获取线程池的峰值线程数(最大池容量)。
  • getActiveCount():获取所有活跃线程总数(正在执行任务的工作线程)的近似值。
  • getPoolSize():获取工作线程集合的容量(当前线程池中的总工作线程数)。
  • purge():移除任务队列中所有是Future类型并且已经处于Cancelled状态的任务。
  • remove():从任务队列中移除指定的任务。
  • BlockingQueue<Runnable> getQueue():获取任务队列的引用。
// 设置核心线程数量
public void setCorePoolSize(int corePoolSize) {
    // 输入值不能小于0或者大于线程池的容量
    if (corePoolSize < 0 || maximumPoolSize < corePoolSize)
        throw new IllegalArgumentException();
    // delta = 传入核心线程数和现存的核心线程数的差值
    int delta = corePoolSize - this.corePoolSize;
    this.corePoolSize = corePoolSize;
    // 如果当前线程池工作线程的总量大于传入核心线程数,则中断所有的工作线程
    if (workerCountOf(ctl.get()) > corePoolSize)
        interruptIdleWorkers();
    else if (delta > 0) {
        // 传入核心线程数和现存的核心线程数的差值大于0,也就是核心线程扩容
        // 计算传入核心线程数和现存的核心线程数的差值和任务队列中任务个数的最小值,并且添加这个最小值个数的工作线程池
        // 任务队列为空的情况下,k === 0,此时第一个条件 k--> 0就不满足,不会进入循环,那么这delta个需要创建的工作线程应该是在提交新任务的时候懒创建
        int k = Math.min(delta,workQueue.size());
        while (k-- > 0 && addWorker(null,true)) {
            // 如果任务队列为空,则跳出循环
            if (workQueue.isEmpty())
                break;
        }
    }
}
原创声明
本站部分文章基于互联网的整理,我们会把真正“有用/优质”的文章整理提供给各位开发者。本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。
本文链接:https://www.coolc.net/news/show_20932.html

本站采用系统自动发货方式,付款后即出现下载入口,如有疑问请咨询在线客服!

售后时间:早10点 - 晚11:30点

咨询售后客服